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Abstract 

The change-point problem for normal regression models is considered here as the problem 
of choosing the hypothesis Ho of no change or one of the hypotheses H, that one or more 
parameters change after the ith observation. The observations are ofien associated with a known 
increasing sequence 7, (for example, zI is the date of the ith observation). It then seems natural 
to introduce a quadratic loss function involving (z, - 7,)’ for selecting H, instead of the true 
hypothesis H,. A Bayes optimal invariant procedure is derived within such a framework and 
compared to previous proposals. When Ho is rejected, large errors may arise in the estimation 
of the change point. To get around this difficulty another procedure is introduced whose main 
feature is to select one of the Hi’s when HO is rejected only if there is sufficient evidence in 
favour of this choice. 

A MS subject class$cation: 62305; 62F15 

Keywords: Bayes procedure; Change point; Invariant procedure; Linear regression model: 
Quadratic loss 

1. Introduction 

Let us consider a sequence of n independent observations, that is independent real- 
valued random variables Y, (i = 1,. . , n). The set of indices is assumed to be naturally 
ordered, for example, the i’s are associated with a given sequence of increasing times 
7, (i = I,. . ,n). In many cases, but not all, z, can be simply taken as i. The probability 
distribution of Y, is known up to a parameter 0. If 0 takes two values, one for T, d z,,, 
and the other for z, > zin, one says that io (or z,,) is a change point for the observed 
sequence. 

Two kinds of change-point problem have been dealt with in the literature. The 
first one is that of testing for the null hypothesis of no change versus the existence 

* Tel.: ~33 61556772; fax: +33 61556089; e-mail: lyazrhi@cix.cict.fr. 

0378-3758/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved 
PIf SO378-3758(96)00105-X 



338 F. LyazrhilJournal of Statistical Planning and Inference 59 (1997) 337-353 

of a change occurring at some unknown time in a sequence of i.i.d. normal ran- 
dom variables (Page, 1955; Chemoff and Zacks, 1964; Gardner, 1969; Hawkins, 1975; 
Worsley, 1979), or in a simple linear model (Quandt, 1958; Farley and Hinich, 1970; 
Maronna and Yohai, 1978), or in a general linear model (Worsley, 1983; Jandhayala 
and MacNeill, 199 1). The second problem is that of estimating the point at which the 
change occurs (Hinkley, 1969, 1971; Holbert and Broemeling, 1977; Schulze, 1982; 
Smith and Cook, 1980; Zacks, 1982). In practice, these two problems are strongly 
linked: when the null hypothesis is rejected it seems natural to wonder where the 
change occurs and, in fact, several usual test statistics provide implicitly a natural 
estimate of the change point. 

In this paper we consider the normal linear model and give a formulation of the 
change-point problem dealing simultaneously with test and estimation by presenting 
the question as a choice between an hypothesis Ho of no change and one of the 
hypotheses Hi’s corresponding to a change at time Zi. 

Due to the previous assumptions, IZi - Zjl can be considered as a distance between 
Hi and H,. This is exploited here by introducing a quadratic loss function for choosing 
Hi instead of Hi, as it is generally done in estimation problems (note, however, that we 
consider only a discrete set of possible changes as it is the case in most the literature, 
with the notable exceptions of Hinkley, 1969, 197 1; Ferreira, 1975; Smith and Cook, 
1980). This loss function leads to a new optimal procedure (Section 3), different from 
the likelihood ratio one (Worsley, 1983) which is Bayes optimal under a different set 
of assumptions, including in particular a simple (O/l) loss function (Lyazrhi, 1992). 
By some of its aspects, namely the choice between Ho and UiHi, our procedure is, 
however, close to Bayesian procedures previously proposed in the literature (Chemoff 
and Zacks, (1964) for the i.i.d. case, Farley and Hinich ( 1970) or Jandhayala and 
MacNeill (1991) for the linear regression). 

It may be considered that the choice of one hypothesis Hi is only relevant if the prob- 
ability of choosing the change point close to the true one is large enough. On the con- 
trary, deciding Ui Hi without making a further choice between the Hi’s may be wiser. 
In Section 4, we state such a decision problem and derive an optimal procedure for it. 

Finally, Section 5 gives a concrete example and compares the behaviour of various 
procedures on simulated data for samples as well as linear models. It is worth noticing 
that our framework includes all the situations where the null hypothesis Ho is contrasted 
with hypotheses Hi’s stipulating that ‘something happens at observation i’. Our presen- 
tation emphasizes the change-point problem, but the derived procedures may be easily 
adapted to several other problems, for example, to the detection of a possible outlier. 

2. Notation and framework 

The n-dimensional normal distribution with mean p and variance-covariance matrix 
V will be denoted by N,& V). We consider n random variables I$ (i = 1,. . . , n) and 
a n x q matrix X of independent variables (q < n). Without loss of generality, it is 
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assumed that rank(X) = q, so that the columns of X span a p-dimensional linear 
subspace of R”, say Q. If Y denotes the column vector of the Yi’s and P(Y) the 
probability distribution of Y, it is assumed henceforth that 9(Y) = N,(p, g2 I,,), where 
1, is the unit matrix of order n and D is a positive unknown parameter. The various 
models differ by the p space. 

The basic model, that is the null hypothesis Ho, is defined by Ho : p E Q or, equiva- 
lently, p = Xp, where p is an unknown vector of q real parameters and X is a known 
n x q matrix. 

Let Ql be a given linear subspace of R” contained in Ql (the linear subspace of 
R” orthogonal to Q). The hypothesis H, is defined by 

If the dimension of Q @ Ql is qi (> q), that is the dimension of Ql is k, = qr - q, 
Q @ QI can be spanned by the columns of an n x q; matrix X, and p can be written 
as p =XIB2. 

All the problems we deal with can be formulated as follows: a set of hypotheses H, 
being given (including Ho as the special case where Q; reduces to zero), choose one 
of the models Hi. 

In many problems the observations are ordered, for example, by the time. More 
precisely, we suppose that they are linked to a given increasing process t, (i = 1,. , n) 
and, in practice, this allows us to introduce a distance 15, - Zj( between the indices i 
and j, when discriminating between H, and Hj. Along the paper, nQ (T-C,, , etc.) denotes 
the orthogonal projector onto Q(Q’, etc.) and we shall simplify the writing by putting 
7ci instead of nQ,. 

Let us first consider some examples. Note that, in most cases, z, may be taken as i 
or as one of the explanatory variables according to their concrete meaning. 

Examples 
(i) One change point in a sequence of i.i.d. random variables. Consider a sequence 

of i.i.d. random variables with a change point in mean after the ith observation. Then 
we have 

Hi : lE(Y) = /~,ll + /.L*lli, /A* # 0 

with ll, = (0 ,..., O,l,..., 1)’ where the first 1 occupies the (i + 1)st rank. Here Q is 
spanned by 11 = llo and Qi is spanned by Z~L (II, ), q = 1, qi = 1 for any i. 

(ii) One change point in a multiple regression model. Note X = [xl ( . lx,,]’ the 
n x q matrix of q independent variables, and Xj* = [Ol IO.. . Ix,+, I.. .1x,]‘. If one 
change point occurs after the ith observation, the hypothesis H, is 

H,: E(Y)=XP+T*fl*, P*#O, q<i<n-q. 

In this case Qi is spanned by [O\ . . . IO.. .I TQI(X~+~ )I.. ITcQL(x~)] and, in general, k, = q 
for all i. 
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(iii) One outlier in a multiple regression model. Let ei = lli-t - lli be the column 
matrix whose elements are 0 but the ith one which is 1. We have 

Hi : lE(Y) = X/3 + lj*ei, p* # 0. 

If ej $! Q, then Qi is a one-dimensional space (ki = 1) spanned by llQ1 (ei). 
(iv) One change point in simple linear regression constrained to continuity. Suppose 

that a simple regression function can change while staying continous at xi. Then X is a 
n x 2 matrix [xlll], Qi is spanned by II,, with ai = [O,. . . , O,xi+l -xi,. . ,x,, -Xi]‘, 
qi = 1, and the several hypotheses are 

Ho : E(Y) = plx + pzn, 

Hi: E(Y)=~~x+/?~fl+~*ai, p*#O, 2<i<n-2. 

Invariance 
These hypotheses are invariant under the group of transformations {y -+ ay + b, 

a > 0, b E Q} and a maximal invariant is the normed vector of residuals T = 
nQl (Y)/(jn,~ (Y)l(. In the sequel only invariant procedures are considered. The re- 
striction to such procedures leads to performing the analysis through T. Under Ho 
the distribution of T is the uniform probability on the unit sphere SQL of Q’, that is 
.P’( T) = Uel. Under one of the alternatives, i.e. p E Q@ Qi, the distribution of T has a 
density gi(SeL 4 R+) with respect to U,, given by (see Caussinus and Vaillant, 1985) 

1 
gi(4AG) = 2M,2_-1 r(T)e -l17G~)/l%+r _(@$@), &sQI, 

where: 

h,(u) = 
r 

euve--a2/2 urn-l du, m = n - q. 

0 

Note that gi(t, p, a) depends only on 0 = rr@)/c~. Therefore, it will be further denoted 

by gi(t, 0). 

3. Bayes optimal procedure 

Let us denote by HI,. . , HJ the set of alternative hypotheses. 
In this section we shall give a Bayes optimal (invariant) procedure (do,dl,. . .,dJ) 
minimising the Bayes risk 

R(d,P,Z) = 2s ri(t)di(t)dUQl(t) 
i=o s& 

with 
J 

ri(t) = C Pj 
j=O J 

Q, Sj(tt d) f(i,j, 0) dpiCs>2 
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where g, is given above (go = 1) and pi, G and Pj are defined as follows: 

. 

. 

(a) Prior distributions 

The prior probability of Hj is pj (c;‘=, pj = 1). 
The conditional prior distribution of 0 given the jth model is P,. For j # 0, it will 
be assumed that Pj has a kj-dimensional density ,fi with respect to the Lebesgue 
measure of QJ. For j = 0, PO is a Dirac measure on 0. 
(b) Loss function 

We define the following loss function for selecting Hi when Hi holds with the value 
0 of the parameter: 

I 0 if i = j, 

if i # 0, j = 0, 

if i = 0, j # 0, 

[ P3(0)(rj - ri)* if i # 0, ,j # 0, 

where Lr E IX+, P2 and es are positive functions. 
When Ha is rejected while it is true, it seems natural that the loss neither depends 

on i nor, of course, on 0. When Ha is accepted when it is false, we assess that the 
loss is the same for any true hypothesis Hi. Finally, when Ha is false and rejected, we 
assume that the loss is quadratic with respect to the difference between the true and 
estimated change points. 

Let 

Ai = 
J’ 

t3(d)gj(t, d)fi(e) dfl (j # Oh 
Q, 

Ui( t) = PjA,(t) 

CL, PhAh(t)’ 

j= I 

and let i*(t) be such that ~i*(~) is the closest r, to T(t). 
From the foregoing assumptions (a) and (b), we have 

ro(t) = e pj J’ g,(C d) /2(d) fj(t)dfl, 
j- I Q, 

rl(t) is minimum over i(i # 0) for i = i*(t),and 

y$ r,(t) = [I PO + 2 pj A,(t) (ti*(t) - T,)' 

j= I 
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Hence we have the following. 

Proposition 3.1. Given the previous assumptions (a) and (b), the following rule is 
Bayes optimal: 

I 
decide in favour of Ha if 

J 

rO(T) < 81 PO + C PjAjCT) (zj - zi’(T))2 
j=l 

decide in favour of Hi (j # 0) $ j = i*(T) and 

I rO(T> > el PO + 2 PjAj(T)(?j - Zj*(r))2, 
j=l 

Proposition 3.1 can be used in two steps : first decide whether or not there is a 
change and, if it this is the case, estimate its location by ri*(r). 

The decision rule provided by Proposition 3.1 depends heavily on /2,8s and the 
prior densities fj's. To operationalize the proposition, we first have to make some 
assumptions about these quantities. Since the hypotheses H; express similar changes 
for any i, we assume that the Qi’s have the same dimension and we set 

I$ = k for all i = l,..., J. (2) 

We then suppose that the losses t!2 and 8s verify 

(3) 

f/t@ 23(e) = b (4) 

for any 8 E Qj \ (0) and any j # 0. 
The conditions above seem fairly realistic since they express that the cost of deciding 

Ho for a given 8 (6#0) increases as this value of 19 becomes less probable. For example, 
for a proper prior, fj(0) is small when llOl\ is large and e,(e) or /s(0) are accordingly 
large. Note that (3) and (4) hold in the special case where fj is constant (Pj is a vague 
prior) while 82 and 8s are constant (‘simple’ loss function). This set of assumptions 
leads to explicit formulas for the risks q(t). Actually, we have from (I), (2) and 

(4): 

,(u~,@)b? e-q &j 1 du. 

The integral between brackets is equal to (27~)~‘~ evz Ilrr~(t)llz/2 (moment generating func- 
tion of the normal distribution up to a multiplicative factor) and the integral over v 
is then easily computed. A similar result is obtained with /2 instead of 83, and we 
have: 
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Lemma 3.1. Zf (a),(b) and (2)-(4) hold: 
0 A,(t) = b(2@(1 - llrr,(t)/12)-“‘2, j = l)...) J, 
0 ro(t) = U(2n)k’2 xi=, pj( 1 - ((lIj(t)112)-m’2 

We can now prove the following proposition. 

Proposition 3.2. Under (a),(b) and (2)-(4), the .following rule is Bayes optimal: 

decide in favour of Ho iJ 

2 pj(l - llIIj(T)((2)-“‘2 

/=I 
otherwise decide in fuvour of HI*(~) so that z,-(T) is the nearest T, to 

I$, Pj(l - Ilnji(T)l12)-m’2 T/ 
Ci=, P,(l - llnj(t>l12)-“‘2 

(5) 

Proof. Using the results provided by Lemma 3.1, Proposition 3.1 leads to decide in 
favour of Ho if 

a(2n)“/2 e pj( 1 - \le,( T)ll*)-m.2 < /, po + h(2#,2 5 &( 1 - l\n,( 7q2)-“” 
/=I /=I 

X(T; - q*(T))*. 

Hence, we get the first step of the proposition with WCJ = (dl po/~)(2n)-~‘*. If Ho is 
rejected, Proposition 3.1 leads to decide in favour of Hi* so that ITS -Z( r)i reaches its 
minimum value over i # 0 for si*. The second step of the proposition comes out by 
using the actual value of Z(T), viz. (5). 

Remark 3.1. In practical situations the pj’s (j # 0) can be naturally taken as equal, 
but other choices are possible: see Ferreira (1975). A proper choice of b/a may be 
easily discussed. From (3), (4) and the definition of r(i,j,0), (b/a)(xi - Tj)2 is the 
ratio of the loss of selecting Hi to the loss of selecting Ho when the true hypothesis 
is Hj. If we assume that it is better to select Ho than Hi when IZi - Zjl is greater than 
d ‘I, while it is better to select Ho if the difference (z, - T,J( is smaller than n T, we 
are led to put (b/u) A22 = 1 which provides a suitable value for b/u. On the other 
hand, wo is more difficult to assess from prior assumptions in practice. We propose to 
get round the difficulty by setting a given probability, say CY, for wrongly rejecting Ho. 
For given b/a, this is theoretically possible since the probability distribution of T 
under Ho depends neither on Q nor on 0. Let w(dz, cc) be the critical value cor- 
responding to the risk cc; therefore, the procedure given by Proposition 3.1 can be 
rewritten as: 
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Corollary 3.1. Under (a), (b) and (2)-(4), and using the expression of AZ, the fol- 
lowing rule is Buyes optimal. 

accept Ho iJ‘ 2 pj (1 - ~~I$(T)~~2)-m’2 
i=l 

(1 - (i,-z*ill)2) <w(Az,cc) 

otherwise, decide in fuvour of Hi* SO that ‘Ti*(T) is the nearest z, to 

E;=, Pj C1 - llni(T>l12)-“‘2 zj 
Cf=, Pj (1 - Ilnj(T)l12)--m’2 

Remark 3.2. (1) If A z is large, that is emphasis is put on the detection of a change 
point rather than the estimation of its precise location, then ((rj - zi* )/A*)’ can be 
neglected and the first step of the rule becomes 

decide in favour of Ho if 2 pj( 1 - 111$(~)112)-“‘2 < W(co, a). (6) 
j=l 

One can show that (6) is exactly the Bayes optimal rule that we obtain for testing Ho 
against U;‘=, Hi when (3) holds and the simple loss function (O/l) is considered (i.e. 
e,(s) = 1). 

(2) On the other hand, the Bayes factor for testing Ho against Ui, Hi (see Smith, 
1975; Booth and Smith, 1982) is 

Bo = & pjBj0, with Bjo = 
Pr(Hj I T > pj 

j=l I- prW,IT) PO’ 

(The notation pr(.(.) is a generic symbol for a conditional probability). Using Bayes’ 
theorem we can reexpress this in the form: Bjo = pr(T(Hj)/pr(T(He), with 
pr(TIHj) = JQ, gj(t, 0)dpj(tI) for j = 0,l. 

Then, if the P,‘s are vague prior distributions, we get by using (3), 

Bjo = ~(27~)~‘~ (1 - llnj(T)((2)--m’2 and Bo = ~(27~)~‘~ 2 pj(l - llI$(7’)112)-“‘2. 
j=l 

Of course, this Bayes factor depends on the undefined constant a. This leads us to 
propose the P value solution to get around this. For another solution, see, for example, 
Speigelhalter and Smith (1982). Note that the problem does not arise if we test Hi 
against Hj (i # 0, j # 0) since Boi = B,’ and Bij = BIo Boj. 

(3) In practice, the change point will be the integer closest to Y(T) given in (5) which 
is the Bayes’ estimator E(rlr) arising from the quadratic term in the loss function (see 
loss function). 

(4) Finally, when replacing m by 12, the left-hand side of (6) is the average of the 
different likelihood ratios (1 - IlI$( r)ll )-n/2 under the different alternatives. Hence, (6) 
is similar to the procedures considered by Chemoff and Zacks (1964), Jandhayala and 
MacNeill (1991), Farley and Hinich (1975) which rest on such averages. 
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4. Another Bayes optimal rule in a more realistic framework 

The most current situation in the literature consists in testing Ho against U;‘=, Hi 
(that is no change against any change). Section 3 deals with the more specific problem 
where, when Ho is rejected, an estimate of the change point is simultaneously provided. 
But we can imagine an intermediate situation with three kinds of decisions: (i) decide 
that there is no change, (ii) decide that there is a change and estimate its position, and 
(iii) decide that there is a change without specifying its position. 

With respect to our previous framework, the latter element has now to be added to 
the set of all possible decisions. It will be indexed by C (for ‘change’). This leads to 
the new loss function where j refers to the true hypothesis (j = 0, 1,. .J) while i 
refers to the decision (i = 0, C, 1,. .J): 

1 0 if i =j, 

/I if i # 0, i # C, j = 0, 

if i = C, j = 0, 

if i = 0, j # 0, 

i 

f3(@(? - q12 if i # 0, i f C, j # 0, 

!4(@ if i = C, j # 0. 

where /I, /2(.) and /s(.) are defined as in the previous section, P’, > 0 and /4( .) is a 
positive function such that 

P4(Q,f,(W = C for all 0 12 pi\(O), j # 0. (7) 

If H; holds for some j # 0, then choosing Ho is clearly worse than choosing Hc, since 
Hc includes H,: hence, we must have 

(‘<Cl 

(even, in practice, c should 
Hc (resp. H,, i # 0) when 
to or perhaps slightly less 
letting 

/; 7.z [, a-c. 
a 

(8) 

be much less than a). /{ (resp. 11) is the cost of choosing 
Ho holds. In practice, it is clear that 1’: should be equal 
than 6,. A simple optimal procedure will be obtained by 

(9) 

Finally, let A't = c/h, where c and b are defined by (7) and (4). Now, .4r is a distance 
(IT, - rj\) between two hypotheses Hi and Hj such that the cost of choosing H, for H, 
is the same as the cost for choosing Hc for H,. We get 

rC(t) = y; PO + c(2Z)k’2 2 /lj(l - ~~~~(t)((~)-~‘~ 
J 

= !{ PO + C(271)k’2 1 Cj(t), 
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with Cj(t) = pj( 1 - IJUj(t)112)-m’2, while ra(t) and ri(t), i # 0, i # C, remain unchanged. 
We have immediately 

J 

Q(t) < rc(t) 4 PO if C Cj(t) < a_c (271)-k’2 
j=l 

and, with i*(t) defined as above, 

J 

Q(t) < Yi*(t) if C Cj(t) < 
j=l 

f+ (27c-kj2 + ; 2 Cj(t)(q - zi*(,)y. 
j=l 

From (9), it is clear that the former inequality implies the latter since /ipo/(a - c) = 
/I PO/U. Therefore, Ha will be accepted if z& Cj < (81 pa/a) (27~~~‘~. 
Further, it is easy to verify 

rC(t) < ri*(t) if k Cj(t)( 1 - (rj -A:*(“)z) < + (27C)-k’2. 
j=l 

Let z(T) be still defined by (5). We have thus proved the following. 

Proposition 4.1. Within the framework defined above, with assumptions (a),(b), 
(2)-(4), (7)-(9), the following procedure is Bayes optimal: 

/ 
accept Ho if k pj (1 - //Z$(T)112)-“‘2 < ~0 

j=l 

accept Hc if & pj(1 - [[ZIj(7’)//2)-m’2 > ~0 
j=l 

and 6 Pj(1 - ((JI(T)/(2)--m’2 
j=l 

(l- (rj-i;(T))2) <wo 

1 accept Hi* SO that Ti*(T) is the nearest Ti to Z(T) if 

1 2 Pj (l - ll~(T)l12~-m’2 
j=l 

(1 _ (Tj-~*(T))2) ,wO. 

The procedure given by Proposition 4.1 depends on two constants ws and AZ. The 
critical value wo can be determined by fixing a level CI (it is then the same value as in 
(6)) and can be replaced by w(o3, LX), while AZ is to be chosen by the user in the light 
of the discussion above, according to the importance given to the misspecification vs. 
the non-specification of a change point. 



F Lyazrhil Journal of Statistical Planning and Inference 59 (1997) 337--353 341 

5. Applications 

In this section we examine a numerical example to illustrate the behaviour of the 
procedures given in Corollary 3.1 and in Proposition 4.1 with several values of dt. 
Then we present simulated experiments to compare the performances of these proce- 
dures to others procedures proposed in the literature, respectively, by Farley and Hinich 
(1970) and Worsley (1983). Two questions have been given attention: (i) The compar- 
ison of the powers, that is the probabilities of rejecting Ho when it does not hold with 
no account of the actual choice of some Hi (this allows comparisons with procedures 
which do not include such a choice). 

(ii) The simultaneous comparison of the probabilities of the various choices, with 
emphasis on finding a good estimate of the change point. 

From the many cases which have been processed, a few typical ones have been 
selected to present the main features of the comparisons. 

For these procedures the computations of critical values have been discussed in the 
literature from a number of viewpoints (Worsley, 1983; Kim and Siegmund, 1989; 
Jandhayala and MacNeill, 1991). Analytical determination is difficult for most of them 
as well as for the procedures proposed in this paper. It is very easy, however, and 
less costly to get good approximate values by simulation. Therefore, the critical values 
which could not be found in the literature have merely been obtained from 100 000 
simulated experiments under Ho. 

5.1. Human fertility in Iran 

The data described in Raftery (1993) and Raftery et al. (1995) concern the human 
fertility in Iran for the years 1949-1977, the period leading up to the islamic revolution. 

The fertility period effect by year & is assumed to be a linear function of the time 
x, = i = z,, i = I,. . ,n = 29, that is 

Ho : IE(Y) = poll + plx. 

It is suspected, however, that the parameters of the regression may have changed after 
an unknown time i with constraint of continuity (see Section 1, example (iv)), hence 
the change-point regression model is 

Hi : E(Y) = /IoIl + fllx + b*ai, i = 2,...,n - 2. 

In this example we suppose that the pi’s (i # 0) are equal. The procedure given in 
Corollary 3.1 has been used first for the 0.01 level and various values of dr. For AT 
infinite (procedure (6)), Ha is rejected with n-’ Cf=, (1 - llUj(T)\12)-M’2 = 455.40 
and a critical value equal to 34.23. When Ha is rejected, Z(T) = 11.85 indicates that 
a change point occurs at 1959. 

This agrees with the results obtained by Raftery who uses the Bayes factor. In 
particular, under some hypotheses he shows that to test Ho against UT=;’ H, it is 
asymptotically equivalent to use rz-’ ~~=, (1 - llIZ,(~)\\2)-“‘2 which is equal to 26.18 
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in this example. To estimate the change point, he uses the posterior probability of r 
rather than Z(T). 

The fact that the acceptance or the rejection of Ho depends on the choice of AZ is 
an inconvenience of this procedure, so that it seems better to use the procedure given 
in Proposition 4.1 which gets around this. The results obtained are that we reject Ho 
at the same 0.01 level and 
- for AZ < 4 we accept Hc (i.e. do not try to estimate the change point). 
- for AZ > 4 we estimate the change point as above. 

5.2. Power comparisons 

We give empirical comparisons of the procedure derived in Section 4 (denoted 
by 43) and the procedures proposed, respectively, by Farley and Hinich (1970) and 
Worsley (1983). The discussion is limited here to the context of simple linear regres- 
sion when the change occurs in slope, constrained to continuity (see Section 1 example 
(iv), from where the notation is borrowed). The values of the explanatory variable are 
xi = i/n and ri = i(i = l,...,n). 

Worsley procedure is the likelihood ratio test of Ho against Uyzf Hi, which rests on 
maxi+0 )(ni( T)l/. Farley and Hinich (1970) derived a locally most powerful procedure 
for testing He against U:z; Hi. Their statistic is: z’ T//(zQ-I (z>ll, with 

z= 0, ( C:=,(xi! -Xj> CJ=lCxn -xj> 
>..., n n ). 

The critical value is the (1 - sl/2)th quantile of the N(O,l ) 

Under both the null and the alternative hypotheses, all 
not depend on /?I and pz2, hence we need not specify any 
parameters. 

distribution. 
the involved statistics do 
values for these unknown 

The sample size is n = 50. For selected values of //?*I (viz. I,!?*\ = 1,2,3), and 
of the change point (jo = 5(5)45), the various statistics have been computed 1000 
times. Based on these values, the empirical power for each test statistic has then been 
evaluated for (x = 0.05 and presented in Figs. l-3. 

Roughly speaking, no procedure is uniformly most powerful, the efficiency depending 
on the amount of change and the location of the change point (see also James et al. 
(1987) or Sen and Srivastava (1975) for similar results concerning the comparison of 
Bayesian and likelihood approaches). The Farley and Hinich procedure performs well 
compared to that of Worsley for change points around the middle of the sample, which 
confirms the result of Jandhayala and MacNeill (1991) in the same context. On the 
other hand, our procedure is the most powerful when /3* is large and the change occurs 
far enough from the middle of the sample, but it is less powerful than the Farley and 
Hinich procedure (although better than the Worsley procedure) when the change occurs 
around the middle of the sample. Thus, our procedure may be the most powerful and 
is never the least powerful of the three. 



F. LvazrhilJournal of Statistid Planning and Inj~rence 59 (tY97) 337-3.53 349 

?I1 
0 10 20 30 40 50 

Fig. I. Change in intercept and slope (constrained to continuity). n = 50, /I* = I, r : 0.05 
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Fig. 2. Change in intercept and slope (constrained to continuity). n = 50, /?* = 2. a : 0.05 

Simulations have been done in other contexts, in particular in comparing our proce- 
dure to the Bayes-type procedure (Jandhayala and MacNeill, 1991) and we arrived at 
similar conclusions. 

5.3. Pvohabilities of good estimation 

In this section simulation results are given for two cases: (i) a sequence of i.i.d. 
normal random variables with a possible shifi in mean, and (ii) simple linear regression 
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Fig. 3. Change in intercept and slope (constrained to continuity). n = 50, /?* = 3, c( = 0.05. 

Table 1 
Sequence of i.i.d. random variables. n = 50, io = 5, p* = 1, a = 0.05 

Worsley Q1 42 43 

Reject HO 0.342 0.335 0.270 0.335 
HS 0.104 0.03 1 0.03 1 0.021 
i E [2,8] 0.251 0.163 0.153 0.064 
iE[2,11] 0.275 0.231 0.202 0.074 
i < 2, i > 39 0.021 0.009 0.006 0.001 
HC 0.746 

with possible change in intercept and slope. In all cases n = 50 and CJ = 1. For the first 
model, the values of the different parameters are p* = 1 (with the notation of example 
(i) in Section 2) and ja = 5,15,25. In the second case (regression), the explanatory 
variable is xi = i/n, zi = xi (i = 1,. . . ,n), the change point is ja = 5,15,25,35 and 
the amount of change is /I* = [I, 11’ (see example (ii) in Section 2). The frequencies 
of the different decisions have been computed for the procedure proposed by Worsley 
(1983), the procedure given in Corollary 3.1 with AZ infinite and A z = 10 (denoted, 
respectively, by Ql and 42) and the procedure given in Proposition 4.1 with A z = 5 
(denoted by 43). 

The frequencies obtained over 1000 replications for CI = 0.05 are displayed in Tables 
l-5. To improve the readability, the results are grouped in the following way: 

row 1 : frequency of Ho rejection 
row 2 : frequency of exact choice of Hi0 
row 3 : frequency of ‘good’ estimates of HjO 
row 4 : frequency of ‘fair’ estimates of Hj, 
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Table 2 
Sequence of i.i.d. random variables. n = 50. jo = 25, p* = 1, x = 0.05 

Worsley Q1 Q2 Q3 

Reject Ho 0.800 0.836 0.830 0.836 
H25 0.210 0.132 0.141 0.090 
i E [22,28] 0.547 0.596 0.611 0.363 
i E [17,33] 0.701 0.793 0.796 0.442 
1 < 11, i 139 0.039 0.003 0.003 0.001 
Hc 0.384 

Table 3 
Simple linear regression. n =- 50, j0 = 15, p* = [I, I I’, Y = 0.05 

Worsley Q1 42 Q3 

Reject HO 0.296 0.316 0.310 0.3 I6 
HI5 0.108 0.029 0.03 I 0.018 
i E [12,18] 0.196 0.132 0.150 0.059 
i E [9,24] 0.229 0.240 0.248 0.073 
i < 6, i > 35 0.03 1 0.014 0.012 0.003 
HC 0.236 

Table 4 
Simple linear regression. n == 50. j0 = 25, [j* = 11. I]‘. a = 0.05 

Worsley Q1 Q2 Q3 

Reject HO 0.345 0.334 0.370 0.334 
Hz5 0.140 0.095 0.107 0.068 
i t [22,28] 0.285 0.237 0.147 0.086 
iE[17,33] 0.313 0.301 0.342 0.155 
i < 10. i > 35 0.025 0.013 0.003 0.002 
h 0.175 

_______ 

Table 5 
Simple linear regression. n = 50. jo = 35. fi* = [I, I]‘. r = 0.05 

Worsley Q1 Q2 43 

Reject Ho 0.670 0.707 0.647 0.707 
H35 0.300 0.082 0.082 0.076 
i t [32,38] 0.498 0.327 0.342 0.201 
i E [26,41] 0.556 0.585 0.561 0.224 
i < 12, i > 44 0.039 0.004 0.005 0.000 
Hc 0.469 

row 5 : frequency of ‘bad’ estimates of Hj, 
row 6 : frequency of decisions in favour of Hc 

From the third to the fifth row, a statement such as i E [2,8] means that one of the hy- 
potheses Hi for i E [2,8] is selected. The length of the intervals for which we say that 
the estimate of Hj, is good, fair or bad is somewhat arbitrary. In fact these intervals 
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have beencw to be as illustrative as possible. Note they are not necessarily sym- 
metric when the change point is far from the middle of the sequence of observations. 

In case (i), the Worsley procedure seems more powerful than the others when the 
change occurs early (or late) in the sequence, while, when the change occurs around 
the middle of the sequence, our procedures (especially Ql and 43) become more 
powerful. Concerning the estimation of the change point, the Worsley procedure gives 
exactly the correct position more often than the other procedures. But it can also be 
quite misleading, since it gives bad estimates in too many cases. These unfortunate 
events are almost entirely avoided with our procedures, as this would be expected, in 
particular of course with procedure 43. 

If we consider cumulative frequencies of good or fairly good estimates, our proce- 
dures perform well except if the change point occurs at the end of the sequence. In 
case (ii), if the change occurs around the beginning (or the end) of a series, Ql and 43 
are more powerful than the other procedures. But, around the middle, 42 becomes the 
most powerful, and Worsley procedure is slightly better than Ql and Q3. Concerning 
the estimation of the change point, the Worsley procedure is often the best to find it 
exactly. On the whole, it is equivalent to Ql and Q3 in finding a fairly good estimates 
but more often provides bad estimates. Concerning the very bad estimates, we get the 
same conclusion as in case (i). 
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